Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ni-catalyzed cross-electrophile coupling (XEC) reactions have gained prominence for the construction of C–C bonds. Prior studies of XEC routes to biaryls have invoked several different mechanisms for the formation of key Ni(Ar)2 intermediates. Here, we provide evidence for a previously unrecognized pathway involving reductively induced transmetalation between NiI(Ar) and NiII(Ar)X species. Chemical and electrochemical reduction of (tBubpy)NiII(2-tolyl)Br (tBubpy = 4,4’-di-tert-butyl-2,2’-bipyridine) to (tBubpy)NiI(2-tolyl) is shown to initiate rapid transmetalation of the 2-tolyl ligand to a second equivalent of (tBubpy)NiII(2-tolyl)Br, affording (tBubpy)NiII(2-tolyl)2 and (tBubpy)NiIBr as well defined products. Experimental and computational data show that the NiI-to-NiII transmetalation mechanism is much more favorable than NiII-to-NiII transmetalation. Oxidation of (tBubpy)NiII(2-tolyl)Br results in rapid reductive elimination of 2-tolyl–Br, rather than promoting the analogous oxidatively induced NiII/NiIII transmetalation. The NiII(2-tolyl)2 product of NiI-to-NiII transmetalation is stable at room temperature, while sterically less encumbered NiII(Ar)2 species undergo rapid reductive elimination to afford biaryl and a Ni0 byproduct. The latter species can serve as a source of electrons to promote further transmetalation and biaryl formation. The unhindered complex (tBubpy)NiII(4-CF3-phenyl)Br undergoes biaryl formation in the absence of added reductant; however, kinetic analysis reveals an induction period and autocatalytic time course. Addition of catalytic quantities of a cobaltocene-based reductant eliminates the induction period and accelerates biaryl formation, consistent with the NiI-to-NiII transmetalation pathway. The results of this study provide a new rationale for previously reported results in the literature and introduce an alternative pathway to consider in the development of Ni-catalyzed biaryl coupling reactions.more » « lessFree, publicly-accessible full text available June 10, 2026
-
Compton Richard G (Ed.)Thin-layer electrochemistry deals with electrochemical reactions in a confined solution comparable to the thickness of the diffusion layer. It gives immediate access to the electrode surface for performing rapid electrolysis reactions. The aim of this article is to highlight the seminal studies and some recent updates on thin-layer electrochemistry in three sub-sections: a) batch-type thin-layer electrodes (TLEs) and their principles, b) optically transparent TLEs for in situ spectral observation of the electrode reaction, and c) thin layer flow microreactors focusing on paired electrochemical reactions.more » « less
-
Abstract Electrochemistry represents unique approaches for the promotion and mechanistic study of chemical reactions and has garnered increasing attention in different areas of chemistry. This expansion necessitates the enhancement of the traditional electrochemical cells that are intrinsically constrained by mass transport limitations. Herein, we present an approach for designing an electrochemical cell by limiting the reaction chamber to a thin layer of solution, comparable to the thickness of the diffusion layer. This thin layer electrode (TLE) provides a modular platform to bypass the constraints of traditional electrolysis cells and perform electrolysis reactions in the timescale of electroanalytical techniques. The utility of the TLE for electrosynthetic applications benchmarked using NHPI‐mediated electrochemical C−H functionalization. The application of microscale electrolysis for the study of drug metabolites was showcased by elucidating the oxidation pathways of the paracetamol drug. Moreover, hosting a microelectrode in the TLE, was shown to enable real‐time probing of the profiles of redox‐active components of these rapid electrosynthesis reactions.more » « less
An official website of the United States government
